1011102421011137646

Course (compulsory, elective)

obligatory

4

ECTS distribution (number

1 20%

1 20%

3 60%

1/2

Year /Semester

No. of credits

Name of the module/subject

Elective path/specialty

30

technical sciences

the sciences

social sciences

Education areas and fields of science and art

Technical sciences

Mathematical sciences

Field of study

Cycle of study:

No. of hours

Lecture:

Operation research and optimization theory

Logistics - Full-time studies - Second-cycle

Second-cycle studies

(brak)

Classes:

Status of the course in the study program (Basic, major, other)

Chain of Delivery Logistics

15 Laboratory:

Responsible for subject / lecturer:

dr Tomasz Brzęczek

email: tomasz.brzeczek@put.poznan.pl

tel. 61 665 33 92

Wydział Inżynierii Zarządzania

Economics

Responsible for subject / lecturer:

dr Tomasz Brzęczek

email: tomasz.brzeczek@put.poznan.pl

tel. 61 665 33 92

Faculty of Engineering Management ul. Strzelecka 11 60-965 Poznań

1	Knowledge	Student knows economic terms and management problems, esppecially operation management problems.		
2	Skills	Student has Excel and computer skills. Makes basic operations of matrix algebra.		
3	Social competencies	Student works in team and prepares project.		

STUDY MODULE DESCRIPTION FORM

Profile of study

Subject offered in:

Form of study (full-time,part-time)

Project/seminars:

(brak)

(general academic, practical)

Polish

(university-wide, from another field)

full-time

15

(brak)

and %)

1 20%

3 60%

20%

To develop skills of input-output modeling in management systems and optimization skills. To deliver knowledge about methods of management optimization and methods of estimation of an economic model.

Study outcomes and reference to the educational results for a field of study

- 1. Student knows typical optimization problems in management, their objectives and constraints. [K2A_W01]
- 3. Knows allocation problems for tasks, resources, travel route and for transport plan problem. [K2A_W09]
- 4. Knows optimization methods with continous and descrete variable and linear or non-linear function. [K2A_W09]

Faculty of Engineering Management

- 1. Student builds input-output model of economic system effectiveness. [K2A_U01]
- 2. Uses optimization methods: graphical, simplex, graphs and transportation algorithm. [K2A_U04,]
- 3. Student estimates or optimizes models with Excel, GRETL and Solver (inc. Solver Foundation). [K2A_U07]
- 4. Uses multi criteria methods (aims hierarchy, metacriterion, fulfillment degre, AHP). [K2A_U04]
- 5. Explains results of optimization models and uses them in management. [K2A_U02]

Social competencies:

- 1. Student is aware of optimization benefits in management and planning. [K2A_K03]
- 2. Spreads optimization in management problem solving. [K2A_K05]
- 3. Can objectively assess and analyze data and solutions of management problems. [S2A_K06]

Assessment methods of study outcomes

Formulating mark:

a) concerning exercises and lecture: on a basis of answers to questions about explained subjects b) concerning laboratory: assessment of proceeding in realisation of actual tasks

Ending mark

- a) concerning exercises and lecture: written test in theory and tasks
- b) concerning laboratory: test in solving tasks with use of computer or team project ?Optimization problem solution in a chosen company?.

Course description

- 1. Clasification and modeling of decision tasks. Problems of production structure, mixture, resource division, transportation and tasks allocation.
- 2. Linear programming. Simplex and graphical method.
- 3. Multi-criteria continous programming. Metacriterion, objectives hierarchy.
- 4. Multi-criteria integer programming. Fulfillment degre, AHP.
- 5. Net programming. CPM? critical path method. PERT-program evaluation and review technique.
- 7. Transportat optimization problem and Little algorithm.
- 8. Basics of nonlinear programming.

Basic bibliography:

- 1. Balakrishnan N., Render B., Stair RM., Managerial Decision Modeling with Spreadsheets, Pearson Education 2006.
- 2. Brzęczek T., Gaspars-Wieloch H., Godziszewski B., Podstawy badań operacyjnych i ekonometrii, Wydawnictwo PP, Poznań 2010.
- 3. Maddala G.S., Lahiri K., Introduction to Econometrics 4-th edition, Wiley 2009.
- 4. Ravindran A.R. (ed.), Operations Research and Management Science Handbook, 904 p., Operations Research Series, CRC Press 2007.
- 5. Przykłady i zadania z badań operacyjnych i ekonometrii, Sikora W. (red.), Wyd. UEP, seria MD 163, Poznań 2005.
- 6. Taha H.S., Operations Research: An Introduction (8-th Edition), 813 p., 2006 (with AMPL and Excel Solver examples)

Additional bibliography:

- 1. Krajevski LJ., Ritzman LP., Malhorta MK., Operations Management, Prentice Hall Int., 2006.
- 2. Węglarz J., Modelowanie i optymalizacja. Badania operacyjne i systemowe, Exit, Warszawa 2003.
- 3. Winston W.L., Operations Research: Applications and Algorithms (with CDrom and InfoTrac) 1440 p., Duxbery Press 2003.

Result of average student's workload

Activity	Time (working hours)
1. lecture	30
2. project	15
3. laboratory	15
4. consultation	30
5. own work	30

Student's workload

Source of workload	hours	ECTS
Total workload	120	5
Contact hours	90	4

Poznan University of Technology Faculty of Engineering Management

F	Practical activities	30	2	